
MACHINES, MONOIDS, CATEGORIES
SUPPLEMENTAL MATERIAL FOR UW PLSE CATEGORY THEORY

SUMMER 2023 CLASS (INSTRUCTOR: JOHN LEO)

GILBERT LOUIS BERNSTEIN

In class, John Leo described monoids as “like groups, but more relevant
to computer scientists, because we don’t always have inverses.” This note
attempts to make that observation more explicit by connecting monoids to
(finite) state-machines. This note asks you to think about whether these are
“the same” or not, and how exactly they are connected.

State machines (far beyond merely finite state machines) are the basis for
most computing theory. Turing machines are state machines. When we
define a small-step operational semantics for a programming language, we
define a state machine. Any hardware design implements a finite state ma-
chine. Lexing and parsing is built on finite and pushdown state machines.
Model checking verifies properties of finite state machines. And so on.

Why bother working this out? You may only have a passing interest in
the usual mathematical examples of algebraic structures. (e.g. group, ring,
field, vector-space) By contrast, you will almost certainly find productive
connections to monoids in your current or future research.

1. (FINITE) STATE MACHINES: REVIEW

Definition 1.1. Recall that we can define a deterministic state machine as a
tuple SM = (Q, A, q0, δ) representing:

• Q a set of states

• A an alphabet of symbols

• q0 ∈ Q an initial state

• δ : Q × A → Q the transition function, which given an input sym-
bol a ∈ A and a current state q produces the next state δ(q, a)

If the set Q is finite, we say that SM is a finite state machine. If we replace
the function δ by a relation δ ⊆ (Q× A)× Q, or equivalently1 by a function

1Why? Recall that the powerset of a set A is defined as P(A) = {X|X ⊆ A}. Now,
consider the type A → Bool interpreted as the set of all functions from A to Bool. There
exists a bijection between these two sets. For X ⊆ A, define 1X(x) = (x ∈ X) sometimes
called the “characteristic function” or “indicator function” of X; for f : A → Bool, define

1



2 GILBERT LOUIS BERNSTEIN

δ : Q × A → P(Q) (i.e. producing a set of possible next states) then we say
that SM is non-deterministic.

At this point, I am supposed to draw a picture of a graph with little
circles and arrows between them, and each arrow labeled with a symbol
from the alphabet A. I’m lazy and want to keep typing, so let me give you
a different example.

Example 1.2 (n-bit counter). Let Q be the set of all n-bit non-negative inte-
gers. Let A = a be an alphabet with only one symbol. Let q0 = 0. Finally,
for all q < 2n−1, let δ(q, a) = q + 1 and δ(2n−1, a) = 0. This finite state
machine represents an n-bit counter. It doesn’t do much, but you’re going
to get really exhausted trying to draw it for n = 32.

Example 1.3 (n-bit counter with on/off control). Let Q and q0 be the same
as before, but A = {0, 1}. Let δ(q, 1) = δ(q, a) from the last example, but
let δ(q, 0) = q.

2. MONOIDS

Recall the definition of monoid from John’s lecture.

Definition 2.1. A monoid is a triple (M, ·, 1) where
• X is a set, (sometimes called a “carrier set”)

• · : M × M → M is the “product” operation between elements of the
monoid

• 1 ∈ M is the “unit” a distinguished element of the monoid

• associativity: ∀x, y, z ∈ M, (x · y) · z = x · (y · z)

• identity: ∀x ∈ M, 1 · x = x · 1 = x

We often merely refer to M as the monoid, when the choice of product and
unit are unambiguous.

Here are two examples of monoids.

Example 2.2 (natural numbers under addition). One example of a monoid
we saw in class is (N,+, 0), the natural numbers, with addition as the
monoidal product and 0 as the monoidal unit.

supp f = {x| f (x) = 1}. One can check that these two maps are inverses. Thus a bijection is
demonstrated. By combining this equivalence with Currying, we get

Q × A → P(Q) � Q × A → Q → Bool

� Q × A × Q → Bool

� P(Q × A × Q)



MACHINES, MONOIDS, CATEGORIES 3

Example 2.3 (integers under addition). We also observed that (Z,+, 0), is a
monoid.

Example 2.4 (integers modulo n under addition). Finally, we observed that
(Zn,+, 0) is also a monoid, whenZn is the integers modulo n, and addition
is performed modulo n.

Have you ever read math notes where the examples seem like they’re
very suggestively chosen? I wonder why authors do that.

3. GENERATORS

Our examples of monoids were in some sense overly simple. On the
other hand, they concerned both infinite or arbitrarily large carrier sets.
Generators can help us get a grasp on why these examples were so simple
to describe.

Definition 3.1 (generators of a monoid). Let M be a monoid, and let G ⊆ M
be any subset of the monoid. If every element x ∈ M can be written as a
product g1 · g2 · · · gn of 0 or more elements gi ∈ G (repetition allowed) then
we say that G are a set of generators for M. (In the case where we write x as
a product of zero generators, we mean that x = 1M, the unit)

Lemma 3.2 (a trivial generating set). Let M be a monoid. Then M is a generat-
ing set for M

Proof. Every element x ∈ M can be written as the word x. □

Problem 3.3 (generating sets for N). Is {0} a generating set for N? Is {1}
a generating set for N? Is {2, 3} a generating set for N? Give proofs or
counterexamples for each question.

Problem 3.4 (generating sets for Z). Is {0} a generating set for Z? Is {1} a
generating set for Z? Is {−1, 1} a generating set for Z? Is {2, 3} a generat-
ing set for Z? Is {−2, 3} a generating set for Z? Give proofs or counterex-
amples for each question.

Problem 3.5 (generating sets for Zn). Is {0} a generating set for Zn? Is {1}
a generating set for Zn? Is {2, 3} a generating set for Z? Give proofs or
counterexamples for each question.

If you’ve taken number theory, you may also enjoy thinking about this
problem. But if not, you should probably skip it.

Problem 3.6 (which elements generate Zn?). Consider any k ∈ Zn. Under
what conditions is {k} a generator for Zn?

Up to this point, we considered identifying generating sets in already
defined monoids. What if we took an arbitrary set and tried to define a
monoid from it?



4 GILBERT LOUIS BERNSTEIN

Definition 3.7 (the Free Monoid). The free monoid on a set G consists of all
strings (also called “words”) formed by sequences of zero or more elements
from G (allowing repetition). We write ϵ to mean the empty sequence, and
G∗ to mean the infinite set of such strings. Then, G∗ forms a monoid with
x1 · x2 = x1x2 defined as string concatenation and ϵ as the unit. One can
easily verify that this satisfies the monoid axioms.

4. MACHINES OR MONOIDS?

I will provide one obvious connection between monoids and state ma-
chines. Then, I will ask you to prove a straightforward extension of this
idea. Finally, I will pose a question that’s harder to get right.

Monoids and state machines have some suggestive connections. For ex-
ample, state machines take strings as input, and elements of monoids can
be described using strings of generators. State machines have sets of states,
and monoids have carrier sets. But in a monoid, any two elements can be
multiplied. And in a state machine, one must have defined an alphabet.

Definition 4.1 (Largest Alphabet Machine). Let (M, ·, 1) be a monoid. Then,
define the state machine MaxMachine(M) = (M, M, 1, ·) with M as both
the set of states and the alphabet, 1 as the initial state, and with · : M ×
M → M as the transition function. Then MaxMachine(M) is a state ma-
chine. If M is finite, then so is the machine.

Corollary 4.2 (Computing Equivalence). Let M be a (finite) monoid. And let
x, y ∈ M∗ be two strings. We can compute whether x = y or not by running
MaxMachine(M) on both x and y as inputs and seeing whether they end up in
the same state or not.

Problem 4.3. We just showed a way to construct a state machine from an
arbitrary monoid. Can you give an example of a state machine SM for
which there does not exist any monoid M s.t. MaxMachine(M) = SM?

One concern might be that most state machines have alphabets that are
smaller than the number of states of the machine. (challenge: if Q = A
can you still solve the preceding problem?) Can we construct a similar
machine with the same computational utility as the “Largest Alphabet”
machine defined above, but using a smaller alphabet?

Problem 4.4 (Machine given Generators). Can you construct a state machine
from the combination of a monoid M and generating set G?

You should be able to provide the preceding construction without too
much trouble. However, now consider the opposite direction. Can we con-
struct a monoid from a given (finite) state machine? The situation appears
to be more complicated.

Example 4.5 (A Possible Obstruction). Consider a finite state machine with
4 states Q = {1, 2, 4a, 4b}, a 2 character alphabet A = {a, b}, initial state



MACHINES, MONOIDS, CATEGORIES 5

q0 = 1, and transition function given by the rules δ(1,−) = 2, δ(2, a) = 4a,
δ(2, b) = 4b, and δ(4i,−) = 4i. We might be tempted to try to construct a
monoid using {a, b} as a generating set. However, we run into a problem.
If a = b in the monoid, then wouldn’t aa = bb also be true in the monoid?
But in the state machine, those two input strings take us to different states.
Alternately, if we said a , b in the monoid, then we would have the prob-
lem that input strings a and b take us to the same state in the state machine.

Problem 4.6. Can you come up with a way to resolve this problem? Can you
define one mapping from machines to monoids and then a second mapping
from monoids to machines (maybe one of the two options above, but not
necessarily) such that the two mappings are inverses of each other?


